3.321 \(\int \frac{\sqrt{a+c x^2}}{x (d+e x)} \, dx\)

Optimal. Leaf size=116 \[ \frac{\sqrt{a e^2+c d^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{d e}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{d}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{e} \]

[Out]

(Sqrt[c]*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/e + (Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*
e^2]*Sqrt[a + c*x^2])])/(d*e) - (Sqrt[a]*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0996047, antiderivative size = 116, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 8, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.364, Rules used = {896, 266, 63, 208, 844, 217, 206, 725} \[ \frac{\sqrt{a e^2+c d^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )}{d e}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{d}+\frac{\sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{e} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + c*x^2]/(x*(d + e*x)),x]

[Out]

(Sqrt[c]*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/e + (Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*
e^2]*Sqrt[a + c*x^2])])/(d*e) - (Sqrt[a]*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/d

Rule 896

Int[((a_) + (c_.)*(x_)^2)^(p_)/(((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))), x_Symbol] :> Dist[(c*d^2 + a*e^2)/
(e*(e*f - d*g)), Int[(a + c*x^2)^(p - 1)/(d + e*x), x], x] - Dist[1/(e*(e*f - d*g)), Int[(Simp[c*d*f + a*e*g -
 c*(e*f - d*g)*x, x]*(a + c*x^2)^(p - 1))/(f + g*x), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g,
0] && NeQ[c*d^2 + a*e^2, 0] && FractionQ[p] && GtQ[p, 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+c x^2}}{x (d+e x)} \, dx &=-\frac{\int \frac{a e-c d x}{(d+e x) \sqrt{a+c x^2}} \, dx}{d}+\frac{a \int \frac{1}{x \sqrt{a+c x^2}} \, dx}{d}\\ &=\frac{a \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+c x}} \, dx,x,x^2\right )}{2 d}+\frac{c \int \frac{1}{\sqrt{a+c x^2}} \, dx}{e}-\left (\frac{c d}{e}+\frac{a e}{d}\right ) \int \frac{1}{(d+e x) \sqrt{a+c x^2}} \, dx\\ &=\frac{a \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{c}+\frac{x^2}{c}} \, dx,x,\sqrt{a+c x^2}\right )}{c d}+\frac{c \operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x}{\sqrt{a+c x^2}}\right )}{e}-\left (-\frac{c d}{e}-\frac{a e}{d}\right ) \operatorname{Subst}\left (\int \frac{1}{c d^2+a e^2-x^2} \, dx,x,\frac{a e-c d x}{\sqrt{a+c x^2}}\right )\\ &=\frac{\sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )}{e}+\frac{\sqrt{c d^2+a e^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{c d^2+a e^2} \sqrt{a+c x^2}}\right )}{d e}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{d}\\ \end{align*}

Mathematica [A]  time = 0.055872, size = 113, normalized size = 0.97 \[ \frac{\sqrt{a e^2+c d^2} \tanh ^{-1}\left (\frac{a e-c d x}{\sqrt{a+c x^2} \sqrt{a e^2+c d^2}}\right )+\sqrt{c} d \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{a+c x^2}}\right )-\sqrt{a} e \tanh ^{-1}\left (\frac{\sqrt{a+c x^2}}{\sqrt{a}}\right )}{d e} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + c*x^2]/(x*(d + e*x)),x]

[Out]

(Sqrt[c]*d*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]] + Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^
2]*Sqrt[a + c*x^2])] - Sqrt[a]*e*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/(d*e)

________________________________________________________________________________________

Maple [B]  time = 0.243, size = 420, normalized size = 3.6 \begin{align*} -{\frac{1}{d}\sqrt{a}\ln \left ({\frac{1}{x} \left ( 2\,a+2\,\sqrt{a}\sqrt{c{x}^{2}+a} \right ) } \right ) }+{\frac{1}{d}\sqrt{c{x}^{2}+a}}-{\frac{1}{d}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}+{\frac{1}{e}\sqrt{c}\ln \left ({ \left ( -{\frac{cd}{e}}+ \left ({\frac{d}{e}}+x \right ) c \right ){\frac{1}{\sqrt{c}}}}+\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) }+{\frac{a}{d}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}}+{\frac{cd}{{e}^{2}}\ln \left ({ \left ( 2\,{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+2\,\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}\sqrt{ \left ({\frac{d}{e}}+x \right ) ^{2}c-2\,{\frac{cd}{e} \left ({\frac{d}{e}}+x \right ) }+{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}} \right ) \left ({\frac{d}{e}}+x \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{a{e}^{2}+c{d}^{2}}{{e}^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+a)^(1/2)/x/(e*x+d),x)

[Out]

-1/d*a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x)+1/d*(c*x^2+a)^(1/2)-1/d*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2
+c*d^2)/e^2)^(1/2)+c^(1/2)/e*ln((-c*d/e+(d/e+x)*c)/c^(1/2)+((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/
2))+1/d/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((d/e+x)
^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2))/(d/e+x))*a+d/e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/
e^2-2*c*d/e*(d/e+x)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((d/e+x)^2*c-2*c*d/e*(d/e+x)+(a*e^2+c*d^2)/e^2)^(1/2))/(d/e+x)
)*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 6.19537, size = 2957, normalized size = 25.49 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x/(e*x+d),x, algorithm="fricas")

[Out]

[1/2*(sqrt(c)*d*log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + sqrt(a)*e*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sq
rt(a) + 2*a)/x^2) + sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2
*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/(d*e), -1/2*(2*sqrt(-c)*d*arct
an(sqrt(-c)*x/sqrt(c*x^2 + a)) - sqrt(a)*e*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) - sqrt(c*d^2 +
a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e
)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/(d*e), 1/2*(sqrt(c)*d*log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*
x - a) + sqrt(a)*e*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) + 2*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c
*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)))/(d*e), -1/2*(2*sqr
t(-c)*d*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) - sqrt(a)*e*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) - 2
*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2
+ a*c*e^2)*x^2)))/(d*e), 1/2*(2*sqrt(-a)*e*arctan(sqrt(-a)/sqrt(c*x^2 + a)) + sqrt(c)*d*log(-2*c*x^2 - 2*sqrt(
c*x^2 + a)*sqrt(c)*x - a) + sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)
*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/(d*e), -1/2*(2*sqrt(-c
)*d*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) - 2*sqrt(-a)*e*arctan(sqrt(-a)/sqrt(c*x^2 + a)) - sqrt(c*d^2 + a*e^2)*l
og((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c
*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/(d*e), 1/2*(2*sqrt(-a)*e*arctan(sqrt(-a)/sqrt(c*x^2 + a)) + sqrt(c)*d*l
og(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 2*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a
*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)))/(d*e), -(sqrt(-c)*d*arctan(sqrt(-c)*x/sqrt
(c*x^2 + a)) - sqrt(-a)*e*arctan(sqrt(-a)/sqrt(c*x^2 + a)) - sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*
(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)))/(d*e)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + c x^{2}}}{x \left (d + e x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+a)**(1/2)/x/(e*x+d),x)

[Out]

Integral(sqrt(a + c*x**2)/(x*(d + e*x)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError